• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Tailoring Organic Cation of 2D Air-Stable Organometal Halide Perovskites for Highly Efficient Planar Solar Cells

    Thumbnail
    Date
    2017
    Author
    Chen, Yani
    Sun, Yong
    Peng, Jiajun
    Zhang, Wei
    Su, Xiaojun
    Zheng, Kaibo
    Pullerits, Tõnu
    Liang, Ziqi
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    2D perovskites have recently been shown to exhibit significantly improved environmental stability. Derived from their 3D analogues, 2D perovskites are formed by inserting bulky alkylammonium cations in‐between the anionic layers. However, these insulating organic spacer cations also hinder charge transport. Herein, such a 2D perovskite, (iso‐BA)2(MA)3Pb4I13, that contains short branched‐chain spacer cations (iso‐BA+) and shows a remarkable increase of optical absorption and crystallinity in comparison to the conventional linear one, n‐BA+, is designed. After applying the hot‐casting (HC) technique, all these properties are further improved. The HC (iso‐BA)2(MA)3Pb4I13 sample exhibits the best ambient stability by maintaining its initial optical absorption after storage of 840 h in an environmental chamber at 20 °C with a relative humidity of 60% without encapsulation. More importantly, the out‐of‐plane crystal orientation of (iso‐BA)2(MA)3Pb4I13 film is notably enhanced, which increases cross‐plane charge mobility. As a result, the highest power conversion efficiencies (PCEs) measured from for current density versus voltage curves afford 8.82% and 10.63% for room‐temperature and HC‐processed 2D perovskites based planar solar cells, respectively. However, the corresponding steady‐state PCEs are remarkably lower, which is presumably due to the significant hysteresis phenomena caused by low charge extraction efficiency at interfaces of C60/2D perovskites.
    DOI/handle
    http://dx.doi.org/10.1002/aenm.201700162
    http://hdl.handle.net/10576/16994
    Collections
    • GPC Research [‎501‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video