Performance evaluation of time-frequency image feature sets for improved classification and analysis of non-stationary signals: Application to newborn EEG seizure detection
Author | Boashash, B. |
Author | Barki, Hichem |
Author | Ouelha, Samir |
Available date | 2020-11-19T08:53:09Z |
Publication Date | 2017 |
Publication Name | Knowledge-Based Systems |
Resource | Scopus |
ISSN | 9507051 |
Abstract | This study demonstrates that a time-frequency (TF) image pattern recognition approach offers significant advantages over standard signal classification methods that use t-domain only or f-domain only features. Two approaches are considered and compared. The paper describes the significance of the standard TF approach for non-stationary signals; TF signal (TFS) features are defined by extending t-domain or f-domain features to a joint (t, f) domain resulting in e.g. TF flatness and TF flux. The performance of the extended TFS features is comparatively assessed using Receiver Operating Characteristic (ROC) analysis Area Under the Curve (AUC) measure. Experimental results confirm that the extended TFS features generally yield improved performance (up to 19%) when compared to the corresponding t-domain and f-domain features. The study also explores a second approach based on novel TF image (TFI) features that further improves TF-based classification of non-stationary signals. New TFI features are defined and extracted from the (t, f) domain; they include TF Hu invariant moments, TF Haralick features, and TF Local Binary Patterns (LBP). Using a state-of-the-art classifier, different metrics based on confusion matrix performance are compared for all extended TFS features and TFI features. Experimental results show the improved performance of TFI features over both TFS features and t-domain only or f-domain only features, for all TF representations and for all the considered performance metrics. The experiment is validated by comparing this new proposed methodology with a recent study, utilizing the same large and complex data set of EEG signals, and the same experimental setup. The resulting classification results confirm the superior performance of the proposed TFI features with accuracy improvement up to 5.52%. |
Language | en |
Publisher | Elsevier B.V. |
Subject | Haralick features Hu invariant moments Local Binary Patterns Machine learning Non-Stationary signal analysis Random forests Time-frequency distributions |
Type | Article |
Pagination | 188-203 |
Volume Number | 132 |
Check access options
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Electrical Engineering [2649 items ]