• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of an activated carbon packed bed for the adsorption of phenols from petroleum refinery wastewater

    Thumbnail
    Date
    2017
    Author
    El-Naas, Muftah H.
    Alhaija, Manal A.
    Al-Zuhair, Sulaiman
    Metadata
    Show full item record
    Abstract
    The performance of an adsorption column packed with granular activated carbon was evaluated for the removal of phenols from refinery wastewater. The effects of phenol feed concentration (80–182 mg/l), feed flow rate (5–20 ml/min), and activated carbon packing mass (5–15 g) on the breakthrough characteristics of the adsorption system were determined. The continuous adsorption process was simulated using batch data and the parameters for a new empirical model were determined. Different dynamic models such as Adams–Bohart, Wolborsko, Thomas, and Yoon-Nelson models were also fitted to the experimental data for the sake of comparison. The empirical, Yoon–Nelson and Thomas models showed a high degree of fitting at different operation conditions, with the empirical model giving the best fit based on the Akaike information criterion (AIC). At an initial phenol concentration of 175 mg/l, packing mass of 10 g, a flow rate of 10 ml/min and a temperature of 25 °C, the SSE of the new empirical and Thomas models were identical (248.35) and very close to that of the Yoon–Nelson model (259.49). The values were significantly lower than that of the Adams–Bohart model, which was determined to be 19,358.48. The superiority of the new empirical model and the Thomas model was also confirmed from the values of the R 2 and AIC, which were 0.99 and 38.3, respectively, compared to 0.92 and 86.2 for Adams–Bohart model.
    DOI/handle
    http://dx.doi.org/10.1007/s11356-017-8469-8
    http://hdl.handle.net/10576/17118
    Collections
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video