• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A pattern-aware method for maximal fuzzy supplement frequent pattern mining

    Thumbnail
    Date
    2017
    Author
    Zhang, Haiqing
    Li, Daiwei
    Li, Tianrui
    Yu, Xi
    Tao, Wang
    Bouras, Abdelaziz
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Advanced pattern mining to extract the hidden but useful information by using proper structure is vital important for efficient information mining in large-scale practical datasets. The existing algorithms have not been capable of effective solving the fuzziness uncertainty of items and confirming the appropriate structure of studied patterns. In order to generate more proper practical patterns, a base-(second-order-effect) pattern structure is proposed to represent the internal relationships among items. In addition, fuzzy weight constraints and properties have been presented to reflect the importance of uncertainty for each item in a whole dataset and in one transaction. Thus, the proposed maximal FSFPs mining algorithm guarantees efficient mining performance based on the proposed advanced pattern-aware dynamic search strategy, preventing overheads of pattern extraction based on the pruning strategies, and adopting fuzzy weight conditions to enhance the dependability of mining results. The extensive experimental results obtained from six benchmark datasets indicate that our algorithm has outstanding performance in comparison to PADS and FPMax? algorithms.
    DOI/handle
    http://dx.doi.org/10.1109/ICIVC.2017.7984541
    http://hdl.handle.net/10576/17442
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video