• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integrated planning of spare parts and service engineers with partial backlogging

    Thumbnail
    View/Open
    Rahimi-Ghahroodi2017_Article_IntegratedPlanningOfSpareParts.pdf (1.187Mb)
    Date
    2017
    Author
    Rahimi-Ghahroodi, S.
    Al Hanbali, A.
    Zijm, W. H. M.
    van Ommeren, J. K. W.
    Sleptchenko, A.
    Metadata
    Show full item record
    Abstract
    In this paper, we consider the integrated planning of resources in a service maintenance logistics system in which spare parts supply and service engineers deployment are considered simultaneously. The objective is to determine close-to-optimal stock levels as well as the number of service engineers that minimize the total average costs under a maximum total average waiting time constraint. When a failure occurs, a spare part and a service engineer are requested for the repair call. In case of a stock-out at spare parts inventory, the repair call will be satisfied entirely via an emergency channel with a fast replenishment time but at a high cost. However, if the requested spare part is in stock, the backlogging policy is followed for engineers. We model the problem as a queueing network. An exact method and two approximations for the evaluation of a given policy are presented. We exploit evaluation methods in a greedy heuristic procedure to optimize this integrated planning. In a numerical study, we show that for problems with more than five types of spare parts it is preferable to use approximate evaluations as they become significantly faster than exact evaluation. Moreover, approximation errors decrease as problems get larger. Furthermore, we test how the greedy optimization heuristic performs compared to other discrete search algorithms in terms of total costs and computation times. Finally, in a rather large case study, we show that we may incur up to 27% cost savings when using the integrated planning as compared to a separated optimization. , The Author(s).
    DOI/handle
    http://dx.doi.org/10.1007/s00291-017-0473-3
    http://hdl.handle.net/10576/17504
    Collections
    • Mechanical & Industrial Engineering [‎1509‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video