• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep Reinforcement Learning for Efficient Uplink NOMA SWIPT Transmissions

    Thumbnail
    View/Open
    Mohamed Elsayed_ OGS Approved Thesis.pdf (3.587Mb)
    Date
    2021-01
    Author
    ELSAYED, MOHAMED ABDELHAMID MOHAMED
    Metadata
    Show full item record
    Abstract
    A key rival technology in radio access strategies for next generation cellular communications is non-orthogonal multiple access (NOMA) due to its enhanced performance compared to existing multiple access techniques such as orthogonal frequency division multiple access (OFDMA). The work in this thesis proposes a framework for an energy efficient system geared towards wireless exchange of intensive data collected from distributed Internet of things (IoT) sensor nodes connected to an edge node acting as a cluster head (CH). The IoT nodes utilize an adaptive compression model as an extra degree of freedom to control the transmitted rate going to the CH. The CH is an energy constrained node and may be battery operated. The CH is capable of radio frequency (RF) energy harvesting (EH) using simultaneous wireless power transfer (SWIPT). The proposed framework exploits deep reinforcement learning (DRL) mechanisms to achieve smart and efficient energy constrained up-link NOMA transmissions in IoT applications requiring data compression. In particular, the DRL maximizes the harvested energy at the CH while enforcing the data compression ratio constraints at the transmitting nodes and satisfying the outage probability constraints at the CH. The data compression in this type of sensor networks is vital in order to minimize the power consumption of the different sensors (transmitting nodes), which increases its service lifetime.
    DOI/handle
    http://hdl.handle.net/10576/17705
    Collections
    • Computing [‎103‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video