On quantized compressed sensing with saturated measurements via convex optimization
المؤلف | Elleuch, Ines |
المؤلف | Abdelkefi, Fatma |
المؤلف | Siala, Mohamed |
المؤلف | Hamila, Ridha |
المؤلف | Al-Dhahir, Naofal |
تاريخ الإتاحة | 2021-04-11T11:07:18Z |
تاريخ النشر | 2016 |
اسم المنشور | European Signal Processing Conference |
المصدر | Scopus |
الملخص | In this paper, we address the problem of sparse signal recovery, from multi-bit scalar quantized compressed sensing measurements, where the saturation issue is taken into account. We propose a convex optimization approach, where saturation errors are jointly estimated with the sparse signal to be recovered. In the proposed approach, saturated measurements, even though over-identified, are considered as outliers and the associated errors are handled as non-negative sparse corruptions with partial support information. We highlight the theoretical recovery guarantee of the proposed approach and we demonstrate, via simulation results, its reliability in cancelling out the effect of the outlying saturated measurements. |
اللغة | en |
الناشر | European Signal Processing Conference, EUSIPCO |
الموضوع | Convex optimization Multi-bit quantized compressed sensing Saturation Sign constraint Sparse corruptions |
النوع | Conference |
الصفحات | 468-472 |
رقم المجلد | 2016-November |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2813 items ]