Quasi-sparsest solutions for quantized compressed sensing by graduated-non-convexity based reweighted ?1minimization
المؤلف | Elleuch, Ines |
المؤلف | Abdelkefi, Fatma |
المؤلف | Siala, Mohamed |
المؤلف | Hamila, Ridha |
المؤلف | Al-Dhahir, Naofal |
تاريخ الإتاحة | 2021-04-11T11:07:19Z |
تاريخ النشر | 2016 |
اسم المنشور | European Signal Processing Conference |
المصدر | Scopus |
الملخص | In this paper, we address the problem of sparse signal recovery from scalar quantized compressed sensing measurements, via optimization. To compensate for compression losses due to dimensionality reduction and quantization, we consider a cost function that is more sparsity-inducing than the commonly used ?1-norm. Besides, we enforce a quantization consistency constraint that naturally handles the saturation issue. We investigate the potential of the recent Graduated-Non-Convexity based reweighted ?1-norm minimization for sparse recovery over polyhedral sets. We demonstrate by simulations, the robustness of the proposed approach towards saturation and its significant performance gain, in terms of reconstruction accuracy and support recovery capability. |
اللغة | en |
الناشر | European Signal Processing Conference, EUSIPCO |
الموضوع | Concave approximation Graduated-non-convexity Quantized compressed sensing Reweighted ?1 Support recovery |
النوع | Conference |
الصفحات | 473-477 |
رقم المجلد | 2016-November |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2811 items ]