عرض بسيط للتسجيلة

المؤلفZabihi, Morteza
المؤلفRad, Ali Bahrami
المؤلفKiranyaz, Serkan
المؤلفGabbouj, Moncef
المؤلفKatsaggelos, Aggelos K.
تاريخ الإتاحة2021-04-22T10:16:23Z
تاريخ النشر2016
اسم المنشورComputing in Cardiology
المصدرScopus
الرقم المعياري الدولي للكتاب23258861
معرّف المصادر الموحدhttp://hdl.handle.net/10576/18297
الملخصPhonocardiogram (PCG) signal is used as a diagnostic test in ambulatory monitoring in order to evaluate the heart hemodynamic status and to detect a cardiovascular disease. The objective of this study is to develop an automatic classification method for anomaly (normal vs. abnormal) and quality (good vs. bad) detection of PCG recordings without segmentation. For this purpose, a subset of 18 features is selected among 40 features based on a wrapper feature selection scheme. These features are extracted from time, frequency, and time-frequency domains without any segmentation. The selected features are fed into an ensemble of 20 feedforward neural networks for classification task. The proposed algorithm achieved the overall score of 91.50% (94.23% sensitivity and 88.76% specificity) and 85.90% (86.91% sensitivity and 84.90% specificity) on the train and unseen test datasets, respectively. The proposed method got the second best score in the PhysioNet/CinC Challenge 2016.
اللغةen
الناشرIEEE Computer Society
الموضوعCardiology
Diagnosis
Phonocardiography
Ambulatory monitoring
Automatic classification
Cardio-vascular disease
Classification tasks
Diagnostic tests
Phonocardiograms
Quality detection
Time frequency domain
Feedforward neural networks
العنوانHeart sound anomaly and quality detection using ensemble of neural networks without segmentation
النوعConference Paper
الصفحات613-616
رقم المجلد43
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة