Larval hatching and development of the wedge shell (Donax trunculus L.) under increased CO2 in southern Portugal
Author | Pereira, Alexandre Miguel |
Author | Range, Pedro |
Author | Campoy, Ana |
Author | Oliveira, Ana Paula |
Author | Joaquim, Sandra |
Author | Matias, Domitília |
Author | Chícharo, Luís |
Author | Gaspar, Miguel Baptista |
Available date | 2021-04-22T10:16:23Z |
Publication Date | 2016 |
Publication Name | Regional Environmental Change |
Resource | Scopus |
ISSN | 14363798 |
Abstract | Noticeable changes in global temperatures, climate and ocean carbon chemistry are the result of carbon dioxide increase in the atmosphere. This increase has been mitigated by the oceans capacity to absorb one-fourth of the carbon dioxide in the atmosphere, although this CO2 intake affects oceans carbonate chemistry [i.e., ocean acidification-(OA)]. The detrimental effect of OA in the development and shell formation has been studied in several species of bivalves, although no information is available on the wedge shell Donaxtrunculus, a gastronomically appreciated species and an important economical resource in several southern European countries. We evaluated the effect of pCO2 increase on hatching and early life stages of D.trunculus, considering two ocean acidification scenarios (?pH ?0.3 and ?pH ?0.6). Our results showed that elevated pCO2 caused a delay in hatching into D-larvae and reduced larvae survival. In the extreme scenario (?pH ?0.6), some trochophore larvae persisted to day 9 of the experiment and more abnormal larvae were produced than in the ?pH ?0.3 and control treatments. At day 5, normal veligers under extreme acidification were smaller than in other treatments, but by day 9, these differences were attenuated and the average size of normal D-larvae varied inversely to the pH gradient. Possible underlying mechanisms for these complex response patterns are discussed, including the existence of phenotypic plasticity or genetic pre-adaptive capacity in this D.trunculus population to cope with future environmental changes. |
Language | en |
Publisher | Springer Verlag |
Subject | Bivalves Calcium carbonate Carbon dioxide Donaxtrunculus Larvae Ocean acidification |
Type | Article |
Pagination | 855-864 |
Issue Number | 3 |
Volume Number | 16 |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
Biological & Environmental Sciences [920 items ]