Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks
المؤلف | Ince, Turker |
المؤلف | Kiranyaz, Serkan |
المؤلف | Eren, Levent |
المؤلف | Askar, Murat |
المؤلف | Gabbouj, Moncef |
تاريخ الإتاحة | 2021-04-22T13:00:30Z |
تاريخ النشر | 2016 |
اسم المنشور | IEEE Transactions on Industrial Electronics |
المصدر | Scopus |
الملخص | Early detection of the motor faults is essential and artificial neural networks are widely used for this purpose. The typical systems usually encapsulate two distinct blocks: feature extraction and classification. Such fixed and hand-crafted features may be a suboptimal choice and require a significant computational cost that will prevent their usage for real-time applications. In this paper, we propose a fast and accurate motor condition monitoring and early fault-detection system using 1-D convolutional neural networks that has an inherent adaptive design to fuse the feature extraction and classification phases of the motor fault detection into a single learning body. The proposed approach is directly applicable to the raw data (signal), and, thus, eliminates the need for a separate feature extraction algorithm resulting in more efficient systems in terms of both speed and hardware. Experimental results obtained using real motor data demonstrate the effectiveness of the proposed method for real-time motor condition monitoring. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Classification (of information) Condition monitoring Convolution Extraction Feature extraction Neural networks Adaptive designs Computational costs Convolutional neural network Feature extraction algorithms Feature extraction and classification Motor current signature analysis Real-time application Sub-optimal choices Fault detection |
النوع | Article |
الصفحات | 7067-7075 |
رقم العدد | 11 |
رقم المجلد | 63 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2754 items ]