عرض بسيط للتسجيلة

المؤلفInce, Turker
المؤلفKiranyaz, Serkan
المؤلفEren, Levent
المؤلفAskar, Murat
المؤلفGabbouj, Moncef
تاريخ الإتاحة2021-04-22T13:00:30Z
تاريخ النشر2016
اسم المنشورIEEE Transactions on Industrial Electronics
المصدرScopus
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/TIE.2016.2582729
معرّف المصادر الموحدhttp://hdl.handle.net/10576/18329
الملخصEarly detection of the motor faults is essential and artificial neural networks are widely used for this purpose. The typical systems usually encapsulate two distinct blocks: feature extraction and classification. Such fixed and hand-crafted features may be a suboptimal choice and require a significant computational cost that will prevent their usage for real-time applications. In this paper, we propose a fast and accurate motor condition monitoring and early fault-detection system using 1-D convolutional neural networks that has an inherent adaptive design to fuse the feature extraction and classification phases of the motor fault detection into a single learning body. The proposed approach is directly applicable to the raw data (signal), and, thus, eliminates the need for a separate feature extraction algorithm resulting in more efficient systems in terms of both speed and hardware. Experimental results obtained using real motor data demonstrate the effectiveness of the proposed method for real-time motor condition monitoring.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعClassification (of information)
Condition monitoring
Convolution
Extraction
Feature extraction
Neural networks
Adaptive designs
Computational costs
Convolutional neural network
Feature extraction algorithms
Feature extraction and classification
Motor current signature analysis
Real-time application
Sub-optimal choices
Fault detection
العنوانReal-Time Motor Fault Detection by 1-D Convolutional Neural Networks
النوعArticle
الصفحات7067-7075
رقم العدد11
رقم المجلد63
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة