• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A dynamic prognosis scheme for flexible operation of gas turbines

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2016
    Author
    Tsoutsanis, Elias
    Meskin, Nader
    Benammar, Mohieddine
    Khorasani, Khashayar
    Metadata
    Show full item record
    Abstract
    The increase in energy demand has led to expansion of renewable energy sources and their integration into a more diverse energy mix. Consequently the operation of thermal power plants, which are spearheaded by the gas turbine technology, has been affected. Gas turbines are now required to operate more flexible in grid supporting modes that include part-load and transient operations. Therefore, condition based maintenance should encapsulate this recent shift in the gas turbine's role by taking into account dynamic operating conditions for diagnostic and prognostic purposes. In this paper, a novel scheme for performance-based prognostics of industrial gas turbines operating under dynamic conditions is proposed and developed. The concept of performance adaptation is introduced and implemented through a dynamic engine model that is developed in Matlab/Simulink environment for diagnosing and prognosing the health of gas turbine components. Our proposed scheme is tested under variable ambient conditions corresponding to dynamic operational modes of the gas turbine for estimating and predicting multiple component degradations. The diagnosis task developed is based on an adaptive method and is performed in a sliding window-based manner. A regression-based method is then implemented to locally represent the diagnostic information for subsequently forecasting the performance behavior of the engine. The accuracy of the proposed prognosis scheme is evaluated through the Probability Density Function (PDF) and the Remaining Useful Life (RUL) metrics. The results demonstrate a promising prospect of our proposed methodology for detecting and predicting accurately and efficiently the performance of gas turbine components as they degrade over time.
    DOI/handle
    http://dx.doi.org/10.1016/j.apenergy.2015.11.104
    http://hdl.handle.net/10576/18369
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video