• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Earth Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Earth Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effects of ambient climate and three warming treatments on fruit production in an alpine, subarctic meadow community

    Thumbnail
    View/Open
    Effects of ambient climate and three warming treatments on.pdf (374.4Kb)
    Date
    2021-03-31
    Author
    Alatalo, Juha M.
    Jägerbrand, Annika K.
    Dai, Junhu
    Mollazehi, Mohammad D.
    Abdel-Salam, Abdel-Salam G.
    Pandey, Rajiv
    Molau, Ulf
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Premise Climate change is having major impacts on alpine and arctic regions, and inter‐annual variations in temperature are likely to increase. How increased climate variability will impact plant reproduction is unclear. Methods In a 4‐year study on fruit production by an alpine plant community in northern Sweden, we applied three warming regimes: (1) a static level of warming with open‐top chambers (OTC), (2) press warming, a yearly stepwise increase in warming, and (3) pulse warming, a single‐year pulse event of higher warming. We analyzed the relationship between fruit production and monthly temperatures during the budding period, fruiting period, and whole fruit production period and the effect of winter and summer precipitation on fruit production. Results Year and treatment had a significant effect on total fruit production by evergreen shrubs, Cassiope tetragona, and Dryas octopetala, with large variations between treatments and years. Year, but not treatment, had a significant effect on deciduous shrubs and graminoids, both of which increased fruit production over the 4 years, while forbs were negatively affected by the press warming, but not by year. Fruit production was influenced by ambient temperature during the previous‐year budding period, current‐year fruiting period, and whole fruit production period. Minimum and average temperatures were more important than maximum temperature. In general, fruit production was negatively correlated with increased precipitation. Conclusions These results indicate that predicted increased climate variability and increased precipitation due to climate change may affect plant reproductive output and long‐term community dynamics in alpine meadow communities.
    DOI/handle
    http://dx.doi.org/10.1002/ajb2.1631
    http://hdl.handle.net/10576/18399
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]
    • Earth Science Cluster [‎216‎ items ]
    • Mathematics, Statistics & Physics [‎786‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video