• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    QU-IR at SemEval 2016 Task 3: Learning to rank on Arabic community question answering forums with word embedding

    Thumbnail
    عرض / فتح
    S16-1134.pdf (415.3Kb)
    التاريخ
    2016
    المؤلف
    Malhas, Rana
    Torki, Marwan
    Elsayed, Tamer
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Resorting to community question answering (CQA) websites for finding answers has gained momentum in the past decade with the explosive rate at which social media has been proliferating. With many questions left unanswered on those websites, automatic and smart question answering systems have seen light. One of the main objectives of such systems is to harness the plethora of existing answered questions; hence transforming the problem to finding good answers to newly posed questions from similar previously-answered ones. As SemEval 2016 Task 3 "Community Question Answering" has focused on this problem, we have participated in the Arabic Subtask. Our system has adopted a supervised learning approach in which a learning-to-rank model is trained over data (questions and answers) extracted from Arabic CQA forums using word2vec features generated from that data. Our primary submission achieved a 29.7% improvement over the MAP score of the baseline. Post submission experiments were further conducted to integrate variations of the word2vec features to our system. Integrating covariance word embedding features has raised the the improvement over the baseline to 37.9%. 2016 Association for Computational Linguistics.
    DOI/handle
    http://dx.doi.org/10.18653/v1/s16-1134
    http://hdl.handle.net/10576/18555
    المجموعات
    • علوم وهندسة الحاسب [‎2484‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video