• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Image de-fencing framework with hybrid inpainting algorithm

    Thumbnail
    View/Open
    Farid2016_Article_ImageDe-fencingFrameworkWithHy.pdf (2.853Mb)
    Date
    2016
    Author
    Farid, Muhammad Shahid
    Mahmood, Arif
    Grangetto, Marco
    Metadata
    Show full item record
    Abstract
    Detection and removal of fences from digital images become essential when an important part of the scene turns to be occluded by such unwanted structures. Image de-fencing is challenging because manually marking fence boundaries is tedious and time-consuming. In this paper, a novel image de-fencing algorithm that effectively detects and removes fences with minimal user input is presented. The user is only requested to mark few fence pixels; then, color models are estimated and used to train Bayes classifier to segment the fence and the background. Finally, the fence mask is refined exploiting connected component analysis and morphological operators. To restore the occluded region, a hybrid inpainting algorithm is proposed that integrates exemplar-based technique with a pyramid-based interpolation approach. In contrast to previous solutions which work only for regular pattern fences, the proposed technique is able to remove both regular and irregular fences. A large number of experiments are carried out on a wide variety of images containing different types of fences demonstrating the effectiveness of the proposed approach. The proposed approach is also compared with state-of-the-art image de-fencing and inpainting techniques and showed convincing results. 2016, Springer-Verlag London.
    DOI/handle
    http://dx.doi.org/10.1007/s11760-016-0876-7
    http://hdl.handle.net/10576/21049
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video