Show simple item record

AdvisorIqbal, Atif
AdvisorAl Emadi, Nasser M A
AuthorMeraj, Mohammad
Available date2021-07-27T09:35:31Z
Publication Date2021-06
URIhttp://hdl.handle.net/10576/21585
AbstractThe next generation of Power Electronics systems would need to be able to work at higher power levels, higher switching frequencies, compact size, and higher ambient temperatures, as well as should have improved energy efficiency than existing Silicon (Si) devices. As a result, new wide bandgap semiconductor technologies must be introduced to address Si's physical limitations. Silicon Carbide (SiC) devices are becoming popular because of their outstanding properties that address all the requirements of the next generation Power Electronics system. On the other hand, the converter topology still plays a major role in deciding the overall system performance. Hence the major objective of this dissertation is to devise new multilevel quasi impedance source (qZS) based converter topologies using SiC devices to achieve a compact, highly efficient, and modular solution for grid integration of Solar PV Energy Source to the utility grid. Other objectives include modification in the PWM methods to address the problem of unequal power-sharing in Solar PV multilevel converters. By using qZS as the front-end power converter several different power converter topologies have been developed and presented in this dissertation. The detailed design, modulation, loss analysis, and control have been developed for multi module cascaded structure. Level-shifted PWM technique is developed at first for two cascaded modules which are similar to the standard Phase opposed disposed Pulse width modulation (PODPWM). However, this control method cannot be directly applied to a higher number of modules. For more than two cascaded modules a unified combined hybrid PWM technique is developed and presented. During normal balanced operation, the power among the modules is unequal. To address the unequal power sharing problem, further modification in the PWM technique is done called the Carrier rotation technique. For providing the isolation between the low voltage PV panels and the high voltage AC grid, a modified Inverter topology, and a new modulation technique is developed. The presented technique, however, is limited to a single module, and more research is needed to implement for cascaded structure. Front-end qZS based single-stage DC-AC-DC converter is developed as an alternative of one of the most popular conventional dual active bridge (DAB) converter. The proposed converter offers reduced component count while maintaining the continuous input current. The detailed operation, modulation technique, simulation, and experimental result are presented to show the superiority of the developed qZS Cascaded Multilevel Converter. The developed power converter has strong commercialization potential
Languageen
Subjectpower medium voltage
Subjectgrid integration
Subjectenergy sources
TitleQuasi impedance source based high power medium voltage converter for grid integration of distributed energy sources
TypeDissertation
DepartmentElectrical Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record