• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Mechanical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Mechanical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction of Optimal Hexagonal Interior Angle for Energy Absorption: Ann to Predict In-Between Experimental Data

    Thumbnail
    View/Open
    Shada Bennbaia_ OGS Approved Thesis.pdf (23.94Mb)
    Date
    2021-06
    Author
    Bennbaia, Shada
    Metadata
    Show full item record
    Abstract
    This thesis's proposed strategic procedure is to predict the interior angle of a hexagonal passive energy absorber structure based on specific properties using an ANN model, which has a great potential to be used as an intelligent engineering design tool. The application of passive energy absorption structures are continuously growing in automobiles, aerospace, packaging industries, and many more due to their high energy absorbing capabilities. This study investigated the energy absorption performance of the aluminum hexagonal structure under quasi-static axial compression tests. These hexagonal structures are designed to have varying interior angle values to study their crushing behavior and identify the relationship between the energy absorption capability and the angle. Artificial Neural Network (ANN) model has been developed, optimized, and evaluated based on the Mean Squared Error (MSE) as a loss function to evaluate the performance of the model. During training, the configured ANN model had a training loss of only 0.09. The model predicted the hexagonal ring angle from unseen data with accuracy between 98.24% and 99.85%. Moreover, the predictive model was used to predict an optimal angle for targeted energy absorption properties based on two different cases. The first case was to maximize the energy absorption and the crushing stability, while the second case was to maximize the load-carrying capacity and amount of energy absorption.
    DOI/handle
    http://hdl.handle.net/10576/22129
    Collections
    • Mechanical Engineering [‎65‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video