• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Remote analysis of soil macronutrients using optical sensor for precision agriculture

    Thumbnail
    View/Open
    2_037017.pdf (718.0Kb)
    Date
    2016
    Author
    Chowdhury, M. E. H.
    Hossain, M. B.
    Adhikary, T.
    Toufikur Rahman, M. M.
    Razzaque, M. A.
    Metadata
    Show full item record
    Abstract
    Continuous cropping without adequate measurement and provisioning of soil nutrient may endanger the sustainability of agriculture. Soil nutrient measurement is greatly required for proper plant growth and effective fertilization. Existing methods of soil testing generally use visual comparison of soil solution colour with the colour-chart and this makes it subjective and error prone and time consuming whereas the spectrophotometer is very expensive and none of the approach suitable for remote analysis of soil macronutrients. On the other hand, the optical sensor could sensitively detect the soil solution colour changes thereby detecting soil nutrients in the sample without delay and subjective error. In this work, a compact optical sensor based on photometric detection of soil nutrients using high precision Photo Diode (PD) and Light Emitting Diode (LED) was developed. Real-time optical sensor using PIC microcontroller was integrated to a remote data collection server for the ease of acquisition and post-processing. The wavelength of LEDs is chosen to fit the absorption band of chemical reagents whose colour develops by reaction with soil nutrients. The sensor was used to detect three soil macronutrients: ammonia nitrogen (NH4-N), nitrate nitrogen (NO3-N), available phosphorus oxide (P2O5) from colour changes caused by addition of chemical reagent in a transparent plastic cell (5.5 mm path length). The resolution of 0.1-20 mg/100g was used as standard solution. The fifteen test samples were taken from different farmlands and ten soil samples were used to calibrate the optical sensor comparing with the result obtained by a colour chart laboratory judgement. The calibration factors obtained were then used to evaluate five unknown soil samples and the results were finally compared with laboratory results, and designed system showed good level of agreement with the laboratory results. 2016 Chaoyang University of Technology.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85022174589&partnerID=40&md5=e4ef23e0867999d27bdbf60893430134
    DOI/handle
    http://hdl.handle.net/10576/22429
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video