• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    In-network data reduction approach based on smart sensing

    Thumbnail
    Date
    2016
    Author
    Awad, Alaa
    Saad, Amal
    Jaoua, Ali
    Mohamed, Amr
    Chiasserini, Carla-Fabiana
    Metadata
    Show full item record
    Abstract
    The rapid advances in wireless communication and sensor technologies facilitate the development of viable mobile-Health applications that boost opportunity for ubiquitous real- time healthcare monitoring without constraining patients' activities. However, remote healthcare monitoring requires continuous sensing for different analog signals which results in generating large volumes of data that needs to be processed, recorded, and transmitted. Thus, developing efficient in-network data reduction techniques is substantial in such applications. In this paper, we propose an in-network approach for data reduction, which is based on fuzzy formal concept analysis. The goal is to reduce the amount of data that is transmitted, by keeping the minimal-representative data for each class of patients. Using such an approach, the sender can effectively reconfigure its transmission settings by varying the target precision level while maintaining the required application classification accuracy. Our results show the excellent performance of the proposed scheme in terms of data reduction gain and classification accuracy, and the advantages that it exhibits with respect to state-of-the-art techniques.
    DOI/handle
    http://dx.doi.org/10.1109/GLOCOM.2016.7841904
    http://hdl.handle.net/10576/22650
    Collections
    • Computer Science & Engineering [‎2482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video