• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A review on challenging issues in Arabic sentiment analysis

    Thumbnail
    View/Open
    jcssp.2016.471.481.pdf (1.027Mb)
    Date
    2016
    Author
    Hamdi, Ali
    Shaban, Khaled
    Zainal, Anazida
    Metadata
    Show full item record
    Abstract
    Understanding what people think about an idea or how they evaluate a product, a service or a policy is important for individuals, companies and governments. Sentiment analysis is the process of automatically identifying opinions expressed in text on certain subjects. The accuracy of sentiment analysis has a direct effect on decision making in both business and government. Working with the Arabic language is very important because of the growing number of online contents in Arabic and the existing resources are limited and the accuracy of existing methods is low. In this study, we do a survey to highlight Arabic sentiment analysis challenging issues based on two main perspectives: Arabic-specific and general linguistic issues. The Arabic-specific challenges are mainly caused by Arabic morphological complexity, limited resources and dialects, while the general linguistic issues include polarity fuzziness, polarity strength, implicit sentiment, sarcasm, spam, review quality and domain dependence. 2016 Ali Hamdi, Khaled Shaban and Anazida Zainal.
    DOI/handle
    http://dx.doi.org/10.3844/jcssp.2016.471.481
    http://hdl.handle.net/10576/22664
    Collections
    • Computer Science & Engineering [‎2485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video