MLP Neural Network Based Gas Classification System on Zynq SoC
المؤلف | Zhai, Xiaojun |
المؤلف | Ali, Amine Ait Si |
المؤلف | Amira, Abbes |
المؤلف | Bensaali, Faycal |
تاريخ الإتاحة | 2021-09-05T05:40:13Z |
تاريخ النشر | 2016 |
اسم المنشور | IEEE Access |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 21693536 |
الملخص | Systems based on wireless gas sensor networks offer a powerful tool to observe and analyze data in complex environments over long monitoring periods. Since the reliability of sensors is very important in those systems, gas classification is a critical process within the gas safety precautions. A gas classification system has to react fast in order to take essential actions in the case of fault detection. This paper proposes a low latency real-time gas classification service system, which uses a multi-layer perceptron (MLP) artificial neural network to detect and classify the gas sensor data. An accurate MLP is developed to work with the data set obtained from an array of tin oxide (SnO2) gas sensor, based on convex micro hotplates. The overall system acquires the gas sensor data through radio-frequency identification (RFID), and processes the sensor data with the proposed MLP classifier implemented on a system on chip (SoC) platform from Xilinx. Hardware implementation of the classifier is optimized to achieve very low latency for real-time application. The proposed architecture has been implemented on a ZYNQ SoC using fixed-point format and the achieved results have shown that an accuracy of 97.4% has been obtained. 2013 IEEE. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Artificial neural network FPGA gas identification system on chip (SoC) ZYNQ |
النوع | Article |
الصفحات | 8138-8146 |
رقم المجلد | 4 |
الملفات في هذه التسجيلة
هذه التسجيلة تظهر في المجموعات التالية
-
الذكاء المعلوماتي [93 items ]