• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Constrained metric learning by permutation inducing isometries

    Thumbnail
    Date
    2016
    Author
    Bosveld, Joel
    Mahmood, Arif
    Huynh, Du Q.
    Noakes, Lyle
    Metadata
    Show full item record
    Abstract
    The choice of metric critically affects the performance of classification and clustering algorithms. Metric learning algorithms attempt to improve performance, by learning a more appropriate metric. Unfortunately, most of the current algorithms learn a distance function which is not invariant to rigid transformations of images. Therefore, the distances between two images and their rigidly transformed pair may differ, leading to inconsistent classification or clustering results. We propose to constrain the learned metric to be invariant to the geometry preserving transformations of images that induce permutations in the feature space. The constraint that these transformations are isometries of the metric ensures consistent results and improves accuracy. Our second contribution is a dimension reduction technique that is consistent with the isometry constraints. Our third contribution is the formulation of the isometry constrained logistic discriminant metric learning (IC-LDML) algorithm, by incorporating the isometry constraints within the objective function of the LDML algorithm. The proposed algorithm is compared with the existing techniques on the publicly available labeled faces in the wild, viewpoint-invariant pedestrian recognition, and Toy Cars data sets. The IC-LDML algorithm has outperformed existing techniques for the tasks of face recognition, person identification, and object classification by a significant margin.
    DOI/handle
    http://dx.doi.org/10.1109/TIP.2015.2502144
    http://hdl.handle.net/10576/22697
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video