• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Biological & Environmental Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Short-term effects of warming treatment and precipitation manipulation on the ecophysiological responses of pinus densiflora seedlings

    Thumbnail
    Date
    2016
    Author
    Yun, Soon Jin
    Han, Saerom
    Han, Seung Hyun
    Kim, Seongjun
    Li, Guanlin
    Park, Minji
    Son, Yowhan
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The aim of this study was to investigate the short-term effects of warming treatment and precipitation manipulation on the growth, photosynthetic rate, and chlorophyll content of Pinus densiflora seedlings based on a climate change scenario in Korea. Two year old P. densiflora seedlings were planted in a nursery in April 2013. The air temperature of warmed plots (W) was set to increase by 3 °C compared to control plots (C) using an infrared heater in May 2013. The three precipitation manipulations consisted of decreased precipitation using transparent panels (–30%; P–), increased precipitation using pumps and drip irrigation (+30%; P+), and a control (0%; P0). Root collar diameter and seedling height of P. densiflora were measured in April and October 2013. Net photosynthetic rate and total chlorophyll contents were measured from June to October 2013. Warming treatment increased the growth of root collar diameter, and the interaction effect of the warming treatment and precipitation manipulation on it was also significant. In contrast, no significant effects were found for the growth of seedling height. These results demonstrate that warming treatment might affect the growth of root collar diameter and seedling height differently. It was also found that WP– treatment decreased net photosynthetic rates. This pattern might be due to the soil moisture availability, as soil moisture content was lowest in the WP– treatment and net photosynthetic rate was elevated with increasing soil moisture content. Meanwhile, warming treatment increased the total chlorophyll content. The results suggest that chlorophyll synthesis was promoted by a temperature increase in the leaves. The current study, which simulated a climate change environment in an open field, provides important information for the prediction of the ecophysiological effects of changes in temperature and precipitation on P. densiflora seedlings in Korea.
    DOI/handle
    http://dx.doi.org/10.3906/tar-1511-68
    http://hdl.handle.net/10576/22715
    Collections
    • Biological & Environmental Sciences [‎940‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video