• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of blade tip geometry on centrifugal compressor performance and stability

    Thumbnail
    Date
    2016
    Author
    Shahina, Ibrahim
    Alqaradawi, Mohamed
    Gadala, Mohamed
    Badr, Osama
    Metadata
    Show full item record
    Abstract
    The reliability operation for small fuel cells and hybrid fuel cell with gas turbine requires centrifugal compressor surge prevention. This study concerns a high speed centrifugal compressor stage with different blade tip geometries. The investigations were performed with unsteady three-dimensional, compressible flow simulations. A novel parameterization method has been developed to alter the tip geometry of an impeller blade. Different tip geometries are investigated includes flat tip blade, main blade winglet, main and splitter blade winglet and finally pressure side grooved tip. The performance and internal flow results are presented at surge, design and near choke points. The conclusion is that the tip geometry has a significant effect on the compressor performance and the operation stability at lower flow rates. The pressure ratio and surge margin for the blades with winglet have been improved and decreased for the grooved tip geometry. More uniform flow at impeller outlet with winglet blade. The use of winglet tip displaces the tip leakage vortex away from the blade and weakening the impingement effect. The winglet tip reduce the aerodynamic losses by unloading the tip section, reducing the leakage flow rate and turning the leakage flow in a more stream wise direction. Medwell Journals, 2016.
    DOI/handle
    http://dx.doi.org/10.3923/jeasci.2016.2769.2774
    http://hdl.handle.net/10576/22824
    Collections
    • Mechanical & Industrial Engineering [‎1509‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video