• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2021
  • Theme 1: Energy and Environment
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Forum Proceedings
  • Qatar University Annual Research Forum & Exhibition
  • QUARFE 2021
  • Theme 1: Energy and Environment
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Double layered polymeric coatings for corrosion protection of steel

    Thumbnail
    View/Open
    129.pdf (2.064Mb)
    Date
    2021
    Author
    Hassanein, Amani
    Khan, Adnan
    Shakoor, R.A.
    Kahraman, Ramazan
    Metadata
    Show full item record
    Abstract
    Corrosion is one of the challenging issues faced by many industries, causing substantial economic losses every year due to the degradation of metallic parts, raising many safety concerns. Therefore, it is of utmost relevance to developing strategies that can repair the damaged part of the coatings to protect the base metal and restrict the initiation of corrosion. Towards this direction, the concept of double-layered polymeric coatings (DLPCs) for corrosion protection is introduced as a novel strategy to bring different healing functionalities into coating matrices. The developed DLPCs are composed of a top layer containing 5wt. % of melamine urea-formaldehyde microcapsules (MUFMC) encapsulating boiled linseed oil (self-healing agent), and bottom layer having 3wt. % benzotriazole (corrosion inhibitor) loaded into halloysite nanotubes (HNTs). The DLPCs were developed on mild steel substrate employing a doctor blade technique. The electrochemical analyses indicates that the DLPCs demonstrate improved corrosion resistant properties. This improved performance can be ascribed to the efficient triggering of the individual carriers in the quarantined matrix, resulting in enhanced corrosion efficiency of the DLPCs. The promising characteristics of DLPCs make them suitable for many potential industrial applications.
    URI
    https://doi.org/10.29117/quarfe.2021.0004
    DOI/handle
    http://hdl.handle.net/10576/24271
    Collections
    • Center for Advanced Materials Research [‎1518‎ items ]
    • Chemical Engineering [‎1201‎ items ]
    • Theme 1: Energy and Environment [‎73‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video