• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • إصدارات جامعة قطر
  • الدوريات الجارية
  • دراسات في الأعمال و الاقتصاد
  • 2021 - Volume 24 - Issue 1
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • إصدارات جامعة قطر
  • الدوريات الجارية
  • دراسات في الأعمال و الاقتصاد
  • 2021 - Volume 24 - Issue 1
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    TEXT MINING DATA FROM STUDENTS TO REVEAL MEANINGFUL INFORMATION FOR EDUCATORS

    Thumbnail
    عرض / فتح
    TEXT MINING DATA FROM STUDENTS TO REVEAL MEANINGFUL INFORMATION FOR EDUCATORS.pdf (1.243Mb)
    التاريخ
    2021-12-08
    المؤلف
    AlQenaei, Zainab M.
    Monarchi, David E.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Academic institutions adopt different advising tools for various objectives. Past research used both numeric and text data to predict students’ performance. Moreover, numerous research projects have been conducted to find different learning strategies and profiles of students. Those strategies of learning together with academic profiles assisted in the advising process. This research proposes an approach to supplement these activities by text mining students’ essays to better understand different students’ profiles across different courses (subjects). Text analysis was performed on 99 essays written by undergraduate students in three different courses. The essays and terms were projected in a 20-dimensional vector space. The 20 dimensions were used as independent variables in a regression analysis to predict a student’s final grade in a course. Further analyses were performed on the dimensions found statistically significant. This study is a preliminary analysis to demonstrate a novel approach of extracting meaningful information by text mining essays written by students to develop an advising tool that can be used by educators.
    DOI/handle
    http://dx.doi.org/10.29117/sbe.2021.0125
    http://hdl.handle.net/10576/25585
    المجموعات
    • 2021 - Volume 24 - Issue 1 [‎4‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video