• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    High gain switched-inductor-double-leg converter with wide duty range for dc microgrid

    Thumbnail
    Date
    2021
    Author
    Samiullah Md.
    Bhaskar M.S.
    Meraj M.
    Iqbal A.
    Ashraf I.
    Komurcugil H.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    In a dc microgrid, efficient high gain converters are needed to raise the voltage level of low voltage power sources such as photovoltaic, fuel cells, etc. In this article, a high-gain switched-inductor-double-leg converter for dc microgrid is proposed. The proposed converter is capable of providing higher gain devoid of using any transformer, coupled inductor, and multiple voltage lifting techniques, e.g., triple lift, quadruple lift, super lift, etc. The operating modes of the converter are controlled using three switches in double duty mode. Compared to single duty converter, the double duty converter provides a flexibility in selection of duty cycle for switch to achieve desired output voltage and controlling inductor current ripple magnitude by selecting appropriate duty cycles. Moreover, two duty cycles make the converter capable of achieving high gain with wide duty range and an individual switch does not need to operate at very large duty cycle to achieve high voltage gain. The topological description, operating principles, steady-state voltage gain analysis during continuous conduction mode and discontinuous continuous mode, boundary condition, and voltage and current analysis, efficiency analysis, comparison and design of the proposed are presented. The proposed converter is tested in laboratory to validate its feasibility and performance.
    DOI/handle
    http://dx.doi.org/10.1109/TIE.2020.3028794
    http://hdl.handle.net/10576/27428
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video