• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Compressive SensingBased Remote Monitoring Systems for IoT applications

    Thumbnail
    View/Open
    qfarc.2018.ICTPP1046.pdf (178.9Kb)
    Date
    2018
    Author
    Djelouat, Hamza
    Al Disi, MOHAMED
    Amira, Abbes
    Bensaali, Faycal
    Metadata
    Show full item record
    Abstract
    Internet of things (IoT) is shifting the healthcare delivery paradigm from in-person encounters between patients and providers to an "anytime, anywhere" model delivery. Connected health has become more profound than ever due to the availability of wireless wearable sensors, reliable communication protocols and storage infrastructures. Wearable sensors would offer various insights regarding the patient's health (electrocardiogram (ECG), electroencephalography (EEG), blood pressure, etc.) and their daily activities (hours slept, step counts, stress maps,) which can be used to provide a thorough diagnosis and alert healthcare providers to medical emergencies. Remote elderly monitoring system (REMS) is the most popular sector of connected health, due to the spread of chronic diseases amongst the older generation. Current REMS use low power sensors to continuously collect patient's records and feed them to a local computing unit in order to perform real-time processing and analysis. Afterward, the local processing unit, which acts as a gateway, feeds the data and the analysis report to a cloud server for further analysis. Finally, healthcare providers can then access the data, visualize it and provide the proper medical assistant if necessary. Nevertheless, the state-of-the-art IoT-based REMS still face some limitations in terms of high energy consumption due to raw data streaming. The high energy consumption decreases the sensor's lifespan immensely, hence, a severe degradation in the overall performance of the REMS platform. Therefore, sophisticated signal acquisition and analysis methods, such as compressed sensing (CS), should be incorporated. CS is an emerging sampling/compression theory, which guarantees that an N-length sparse signals can be recovered from M-length measurement vector (M<<N) using efficient algorithms such as convex relaxation approaches and greedy algorithms. This work aims to enable two different scenarios for REMS by leveraging the concept of CS in order to reduce the number of samples transmitted form the sensors while maintaining a high quality of service. The first one is dedicated to abnormal heart beat detection, in which, ECG data from different patients is collected, transmitted and analysed to identify any type of arrhythmia or irregular abnormalities in the ECG. The second one aims to develop an automatic fall detection platform in order to detect falls occurrence, their strength, their direction in order to raise alert and provide prompt assistance and adequate medical treatment. In both applications, CS is explored to reduce the number of transmitted samples form the sensors, hence, increase the sensors lifespan. In addition, the identification and the detection is enabled by means of machine learning and pattern recognition algorithms. In order to quantify the performance of the system, subspace pursuit (SP) has been adopted as recovery algorithm. Whereas for data identification and classification, K-nearest neighbour (KNN), E-nearest neighbour (ENN), decision tree (BDT) and committee machine (CM) have been adopted.
    URI
    https://doi.org/10.5339/qfarc.2018.ICTPP1046
    DOI/handle
    http://hdl.handle.net/10576/27888
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video