• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Compressive SensingBased Remote Monitoring Systems for IoT applications

    Thumbnail
    عرض / فتح
    qfarc.2018.ICTPP1046.pdf (178.9Kb)
    التاريخ
    2018
    المؤلف
    Djelouat, Hamza
    Al Disi, MOHAMED
    Amira, Abbes
    Bensaali, Faycal
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Internet of things (IoT) is shifting the healthcare delivery paradigm from in-person encounters between patients and providers to an "anytime, anywhere" model delivery. Connected health has become more profound than ever due to the availability of wireless wearable sensors, reliable communication protocols and storage infrastructures. Wearable sensors would offer various insights regarding the patient's health (electrocardiogram (ECG), electroencephalography (EEG), blood pressure, etc.) and their daily activities (hours slept, step counts, stress maps,) which can be used to provide a thorough diagnosis and alert healthcare providers to medical emergencies. Remote elderly monitoring system (REMS) is the most popular sector of connected health, due to the spread of chronic diseases amongst the older generation. Current REMS use low power sensors to continuously collect patient's records and feed them to a local computing unit in order to perform real-time processing and analysis. Afterward, the local processing unit, which acts as a gateway, feeds the data and the analysis report to a cloud server for further analysis. Finally, healthcare providers can then access the data, visualize it and provide the proper medical assistant if necessary. Nevertheless, the state-of-the-art IoT-based REMS still face some limitations in terms of high energy consumption due to raw data streaming. The high energy consumption decreases the sensor's lifespan immensely, hence, a severe degradation in the overall performance of the REMS platform. Therefore, sophisticated signal acquisition and analysis methods, such as compressed sensing (CS), should be incorporated. CS is an emerging sampling/compression theory, which guarantees that an N-length sparse signals can be recovered from M-length measurement vector (M<<N) using efficient algorithms such as convex relaxation approaches and greedy algorithms. This work aims to enable two different scenarios for REMS by leveraging the concept of CS in order to reduce the number of samples transmitted form the sensors while maintaining a high quality of service. The first one is dedicated to abnormal heart beat detection, in which, ECG data from different patients is collected, transmitted and analysed to identify any type of arrhythmia or irregular abnormalities in the ECG. The second one aims to develop an automatic fall detection platform in order to detect falls occurrence, their strength, their direction in order to raise alert and provide prompt assistance and adequate medical treatment. In both applications, CS is explored to reduce the number of transmitted samples form the sensors, hence, increase the sensors lifespan. In addition, the identification and the detection is enabled by means of machine learning and pattern recognition algorithms. In order to quantify the performance of the system, subspace pursuit (SP) has been adopted as recovery algorithm. Whereas for data identification and classification, K-nearest neighbour (KNN), E-nearest neighbour (ENN), decision tree (BDT) and committee machine (CM) have been adopted.
    معرّف المصادر الموحد
    https://doi.org/10.5339/qfarc.2018.ICTPP1046
    DOI/handle
    http://hdl.handle.net/10576/27888
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video