Novel composite materials of modified roasted date pits using ferrocyanides for the recovery of lithium ions from seawater reverse osmosis brine
Author | Al-Absi, Rana S. |
Author | Abu-Dieyeh, Mohammed H. |
Author | Ben-Hamadou, Radhouane |
Author | Nasser, Mustafa S. |
Author | Al-Ghouti, Mohammad A. |
Available date | 2022-03-13T06:38:41Z |
Publication Date | 2021-12-01 |
Publication Name | Scientific Reports |
Identifier | http://dx.doi.org/10.1038/s41598-021-98438-2 |
Citation | Al-Absi, R.S., Abu-Dieyeh, M.H., Ben-Hamadou, R. et al. Novel composite materials of modified roasted date pits using ferrocyanides for the recovery of lithium ions from seawater reverse osmosis brine. Sci Rep 11, 18896 (2021). https://doi.org/10.1038/s41598-021-98438-2 |
Abstract | In this paper, novel composite materials from modified roasted date pits using ferrocyanides were developed and investigated for the recovery of lithium ions (Li+) from seawater reverse osmosis (RO) brine. Two composite materials were prepared from roasted date pits (RDP) as supporting material, namely potassium copper hexacyanoferrate-date pits composite (RDP-FC-Cu), and potassium nickel hexacyanoferrate-date pits composite (RDP-FC-Ni). The physiochemical characterization of the RO brine revealed that it contained a variety of metals and salts such as strontium, zinc, lithium, and sodium chlorides. RDP-FC-Cu and RDP-FC-Ni exhibited enhanced chemical and physical characteristics than RDP. The optimum pH, which attained the highest adsorption removal (%) for all adsorbents, was at pH 6. In addition, the highest adsorption capacities for the adsorbents were observed at the initial lithium concentration of 100 mg/L. The BET surface area analysis confirmed the increase in the total surface area of the prepared composites from 2.518 m2/g for RDP to 4.758 m2/g for RDP-FC-Cu and 5.262 m2/g for RDP-FC-Ni. A strong sharp infrared peak appeared for the RDP-FC-Cu and RDP-FC-Ni at 2078 cm−1. This peak corresponds to the C≡N bond, which indicates the presence of potassium hexacyanoferrate, K4[Fe(CN)6]. The adsorption removal of lithium at a variety of pH ranges was the highest for RDP-FC-Cu followed by RDP-FC-Ni and RDP. The continuous increase in the adsorption capacity for lithium with increasing initial lithium concentrations was also observed. This could be mainly attributed to enhance and increased lithium mass transfer onto the available adsorption active sites on the adsorbents’ surface. The differences in the adsorption in terms of percent adsorption removal were clear and significant between the three adsorbents (P value < 0.05). All adsorbents in the study showed a high lithium desorption percentage as high as 99%. Both composites achieved full recoveries of lithium from the RO brine sample despite the presence of various other competing ions. |
Sponsor | This work was made possible by Qatar University collaborative internal grant # [QUCG-CAS-20/21-2]. The findings achieved herein are solely the responsibility of the author[s]. |
Language | en |
Publisher | Nature Research |
Subject | Novel composite materials Chemistry Environmental sciences |
Type | Article |
Issue Number | 1 |
Volume Number | 11 |
ESSN | 2045-2322 |
Files in this item
This item appears in the following Collection(s)
-
Biological & Environmental Sciences [920 items ]