عرض بسيط للتسجيلة

المؤلفOmri, Aymen
المؤلفHamila, R.
المؤلفHasna, M.
المؤلفBouallegue, R.
المؤلفChaieb, H.
تاريخ الإتاحة2022-03-17T05:31:19Z
تاريخ النشر2010
اسم المنشورQatar Foundation Annual Research Forum Proceedings
المصدرqscience
الاقتباسOmri A et al. (2010). Estimation of highly selective channels for downlink LTE systemby a robust neural network. Qatar Foundation Annual Research Forum Proceedings 2010: CSP6 https://doi.org/10.5339/qfarf.2010.CSP6.
الرقم المعياري الدولي للكتاب2226-9649
معرّف المصادر الموحدhttps://doi.org/10.5339/qfarf.2010.CSP6
معرّف المصادر الموحدhttp://hdl.handle.net/10576/28245
الملخصIn this paper we propose a robust channel estimator for the downlink of a Long Term Evolution (LTE) system using a highly selective neural network. This method uses the information provided by the reference signals to estimate the total frequency response of the channel in two phases. In the first phase, the proposed method learns to adapt to the channel variations, and in the second phase it predicts the channel parameters. The performance of the estimation method in terms of complexity and quality is confirmed by theoretical analysis and simulations in an LTE/OFDMA (Orthogonal Frequency-Division Multiple Access) transmission system. The performance of the proposed channel estimator is compared with those of least-square decision feedback and modified Wiener methods. The simulation results show that the proposed estimator performs better than the above estimators and it is more robust at high-speed mobility.
اللغةen
الناشرHamad bin Khalifa University Press (HBKU Press)
الموضوعLong Term Evolution (LTE) system
neural network
LTE/OFDMA (Orthogonal Frequency-Division Multiple Access)
العنوانEstimation of highly selective channels for downlink LTE systemby a robust neural network
النوعConference Paper
رقم العدد1
رقم المجلد2010
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة