• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Mathematics, Statistics & Physics
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancing the detection ability of control charts in profile monitoring by adding RBF ensemble model

    View/Open
    Manuscript-Enhancing the Detection - Neural Computing.pdf (1.949Mb)
    Date
    2022-02-12
    Author
    Yeganeh, Ali
    Shadman, Alireza
    Abbasi, Saddam Akber
    Metadata
    Show full item record
    Abstract
    While numerous contributions and applications have been extended in profile monitoring, little attention has been paid to employing machine learning techniques in development of control charts. In this paper, a novel control chart based on artificial neural network is proposed to improve the performance of monitoring general linear profiles in Phase II. Specifically, an ensemble of radial basis functions (RBF) is added to the predefined base control chart to enhance the detection ability of the control chart for monitoring linear profile parameters based on the average run length (ARL) criterion. The performance of the proposed method is evaluated by adjusting the multivariate exponentially weighted moving average (MEWMA) control chart as a base control chart under simple and multiple linear profiles. The simulation results demonstrate that the proposed approach is very efficient than competing existing methods for monitoring linear profile parameters. Moreover, profile diagnosis actions, referring to the identification of shifted parameters, are provided based on the RBF networks. Finally, we provide an example from thermal management to illustrate the implementation of the proposed monitoring scheme and diagnostic method.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85124552176&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s00521-022-06962-7
    http://hdl.handle.net/10576/28321
    Collections
    • Mathematics, Statistics & Physics [‎790‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video