• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الآداب والعلوم
  • الرياضيات والإحصاء والفيزياء
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الآداب والعلوم
  • الرياضيات والإحصاء والفيزياء
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancing the detection ability of control charts in profile monitoring by adding RBF ensemble model

    عرض / فتح
    Manuscript-Enhancing the Detection - Neural Computing.pdf (1.949Mb)
    التاريخ
    2022-02-12
    المؤلف
    Yeganeh, Ali
    Shadman, Alireza
    Abbasi, Saddam Akber
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    While numerous contributions and applications have been extended in profile monitoring, little attention has been paid to employing machine learning techniques in development of control charts. In this paper, a novel control chart based on artificial neural network is proposed to improve the performance of monitoring general linear profiles in Phase II. Specifically, an ensemble of radial basis functions (RBF) is added to the predefined base control chart to enhance the detection ability of the control chart for monitoring linear profile parameters based on the average run length (ARL) criterion. The performance of the proposed method is evaluated by adjusting the multivariate exponentially weighted moving average (MEWMA) control chart as a base control chart under simple and multiple linear profiles. The simulation results demonstrate that the proposed approach is very efficient than competing existing methods for monitoring linear profile parameters. Moreover, profile diagnosis actions, referring to the identification of shifted parameters, are provided based on the RBF networks. Finally, we provide an example from thermal management to illustrate the implementation of the proposed monitoring scheme and diagnostic method.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85124552176&origin=inward
    DOI/handle
    http://dx.doi.org/10.1007/s00521-022-06962-7
    http://hdl.handle.net/10576/28321
    المجموعات
    • الرياضيات والإحصاء والفيزياء [‎790‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video