Actuator Fault Diagnosis in Multi-Zone HVAC Systems using 2D Convolutional Neural Networks
المؤلف | Elnour, M. |
المؤلف | Meskin, Nader |
تاريخ الإتاحة | 2022-04-14T08:45:39Z |
تاريخ النشر | 2020 |
اسم المنشور | 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies, ICIoT 2020 |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1109/ICIoT48696.2020.9089508 |
الملخص | This paper presents a novel supervised on-line fault diagnosis strategy in Heating, Ventilation, and Air conditioning (HVAC) systems for actuator faults using 2D Convolutional Neural Networks. It is based on an efficient 1-Dimensional to 2-Dimensional data transformation that eliminates the need for advanced signals pre-processing. The proposed approach aims to address the limitations found in the previous works in terms of the diagnosis accuracy by adopting the recently evolving topology of the Convolutional Neural Networks. It is developed and validated using simulation data collected for a 3-zone HVAC system simulator using Transient System Simulation Tool (TRNSYS). The proposed approach demonstrates an improved performance when compared to the other data-driven approaches for actuator fault diagnosis in HVAC systems. |
اللغة | en |
الناشر | Institute of Electrical and Electronics Engineers Inc. |
الموضوع | Actuators Air conditioning Convolution Failure analysis Fault detection HVAC Internet of things Metadata Actuator fault Data transformation Data-driven approach HVAC system On-line fault diagnosis Pre-processing Simulation data Transient systems Convolutional neural networks |
النوع | Conference |
الصفحات | 404-409 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2811 items ]