• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cybersecurity for industrial control systems: A survey

    No Thumbnail [120x130]
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2020
    Author
    Bhamare, D.
    Zolanvari, M.
    Erbad, A.
    Jain, R.
    Khan, K.
    Meskin, Nader
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Industrial Control System (ICS) is a general term that includes supervisory control & data acquisition (SCADA) systems, distributed control systems (DCS), and other control system configurations such as programmable logic controllers (PLC). ICSs are often found in the industrial sectors and critical infrastructures, such as nuclear and thermal plants, water treatment facilities, power generation, heavy industries, and distribution systems. Though ICSs were kept isolated from the Internet for so long, significant achievable business benefits are driving a convergence between ICSs and the Internet as well as information technology (IT) environments, such as cloud computing. As a result, ICSs have been exposed to the attack vectors used in the majority of cyber-attacks. However, ICS devices are inherently much less secure against such advanced attack scenarios. A compromise to ICS can lead to enormous physical damage and danger to human lives. In this work, we have a close look at the shift of the ICS from stand-alone systems to cloud-based environments. Then we discuss the major works, from industry and academia towards the development of the secure ICSs, especially applicability of the machine learning techniques for the ICS cyber-security. The work may help to address the challenges of securing industrial processes, particularly while migrating them to the cloud environments.
    DOI/handle
    http://dx.doi.org/10.1016/j.cose.2019.101677
    http://hdl.handle.net/10576/29775
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement

    Related items

    Showing items related by title, author, creator and subject.

    • No Thumbnail [110x130]

      A comprehensive review of the cyber-attacks and cyber-security on load frequency control of power systems 

      Mohan, A.M.; Meskin, Nader; Mehrjerdi, H. ( MDPI AG , 2020 , Article Review)
      Power systems are complex systems that have great importance to socio-economic development due to the fact that the entire world relies on the electric network power supply for day-to-day life. Therefore, for the stable ...
    • No Thumbnail [110x130]

      Adaptive cooperative control of nonlinear multi-agent systems with uncertain time-varying control directions and dead-zone nonlinearity 

      Shahriari-kahkeshi, M.; Meskin, Nader ( Elsevier B.V. , 2021 , Article)
      This paper investigates the development of an adaptive cooperative control scheme for the consensus of uncertain nonlinear multi-agent systems subjected to uncertain time-varying control direction, disturbances, and dead-zone ...
    • No Thumbnail [110x130]

      Enhanced block-sparse adaptive Bayesian algorithm based control strategy of superconducting magnetic energy storage units for wind farms power ripple minimization 

      Hasanien, H. M.; Turky, R. A.; Tostado-Veliz, M.; Muyeen, S.M.; Jurado, F. ( Elsevier Ltd , 2022 , Article)
      This article presents a novel enhanced block-sparse adaptive Bayesian algorithm (EBSABA) to fully control proportional-integral (PI) controllers of superconducting magnetic energy storage (SMES) units. The main goal is to ...

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video

    NoThumbnail