عرض بسيط للتسجيلة

المؤلفTsoutsanis, E.
المؤلفMeskin, Nader
المؤلفBenammar, M.
المؤلفKhorasani, K.
تاريخ الإتاحة2022-04-14T08:45:42Z
تاريخ النشر2015
اسم المنشورJournal of Engineering for Gas Turbines and Power
المصدرScopus
المعرّفhttp://dx.doi.org/10.1115/1.4029710
معرّف المصادر الموحدhttp://hdl.handle.net/10576/29801
الملخصGas turbines are faced with new challenges of increasing flexibility in their operation while reducing their life cycle costs, leading to new research priorities and challenges. One of these challenges involves the establishment of high fidelity, accurate, and computationally efficient engine performance simulation, diagnosis, and prognosis schemes, which will be able to handle and address the gas turbine's ever-growing flexible and dynamic operational characteristics. Predicting accurately the performance of gas turbines depends on detailed understanding of the engine components behavior that is captured by component performance maps. The limited availability of these maps due to their proprietary nature has been commonly managed by adapting default generic maps in order to match the targeted off-design or engine degraded measurements. Although these approaches might be suitable in small range of operating conditions, further investigation is required to assess the capabilities of such methods for use in gas turbine diagnosis under dynamic transient conditions. The diversification of energy portfolio and introduction of distributed generation in electrical energy production have created need for such studies. The reason is not only the fluctuation in energy demand but also more importantly the fact that renewable energy sources, which work with conventional fossil fuel based sources, supply the grid with varying power that depend, for example, on solar irradiation. In this paper, modeling methods for the compressor and turbine maps are presented for improving the accuracy and fidelity of the engine performance prediction and diagnosis. The proposed component map fitting methods simultaneously determine the best set of equations for matching the compressor and the turbine map data. The coefficients that determine the shape of the component map curves have been analyzed and tuned through a nonlinear multi-objective optimization scheme in order to meet the targeted set of engine measurements. The proposed component map modeling methods are developed in the object oriented MATLAB/SIMULINK environment and integrated with a dynamic gas turbine engine model. The accuracy of the methods is evaluated for predicting multiple component degradations of an engine at transient operating conditions. The proposed adaptive diagnostics method has the capability to generalize current gas turbine performance prediction approaches and to improve performance-based diagnostic techniques. Copyright 2015 by ASME.
اللغةen
الناشرAmerican Society of Mechanical Engineers (ASME)
الموضوعCompressors
Curve fitting
Distributed power generation
Engines
Forecasting
Gas compressors
Gas turbines
Gases
Life cycle
MATLAB
Multiobjective optimization
Renewable energy resources
Computationally efficient
Gas turbine performance
Gas turbine performance diagnostics
Multi-objective optimization scheme
Object-oriented matlabs
Operational characteristics
Renewable energy source
Transient operating condition
Turbine components
العنوانTransient gas turbine performance diagnostics through nonlinear adaptation of compressor and turbine maps
النوعArticle
رقم العدد9
رقم المجلد137
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة