A kernel-based approach to MIMO LPV state-space identification and application to a nonlinear process system
المؤلف | Rizvi, S.Z. |
المؤلف | Mohammadpour, J. |
المؤلف | Toth, R. |
المؤلف | Meskin, Nader |
تاريخ الإتاحة | 2022-04-14T08:45:43Z |
تاريخ النشر | 2015 |
اسم المنشور | IFAC-PapersOnLine |
المصدر | Scopus |
المعرّف | http://dx.doi.org/10.1016/j.ifacol.2015.11.118 |
الملخص | This paper first describes the development of a nonparametric identification method for linear parameter-varying (LPV) state-space models and then applies it to a nonlinear process system. The proposed method uses kernel-based least-squares support vector machines (LS-SVM). While parametric identification methods require proper selection of basis functions in order to avoid over- parametrization or structural bias, the problem of variance-bias tradeoff is avoided by estimating the functional dependencies of the state-space representation on the LPV scheduling variables using measured input and output data under the LS-SVM framework. The proposed formulation allows for LS-SVM to reconstruct and uncover static, as well as dynamic dependencies on scheduling variables in multi-input multi-output (MIMO) LPV models. This is achieved by assuming that the states are measurable, which is a common scenario during online control of many chemical processes described by lumped parameter models. The proposed method does not require an explicit declaration of the feature maps of the nonlinearities of the assumed model structure; instead, it requires the selection of a nonlinear kernel function and tuning its parameters. The developed identification method is applied to a continuous stirred tank reactor (CSTR) model under realistic noise conditions. Another numerical example along with the CSTR system illustrates the performance of the proposed algorithm under both static and dynamic dependence on the scheduling variables. 2015, IPAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. |
راعي المشروع | Qatar National Research Fund |
اللغة | en |
الناشر | Elsevier B.V. |
الموضوع | Least squares approximations MIMO systems Scheduling State space methods Support vector machines Kernel function LPV systems LS-SVM Non-parametric identification Process system Parameter estimation |
النوع | Conference |
الصفحات | 85-90 |
رقم العدد | 26 |
رقم المجلد | 48 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2817 items ]