عرض بسيط للتسجيلة

المؤلفGolabi, A.
المؤلفMeskin, Nader
المؤلفToth, R.
المؤلفMohammadpour, J.
تاريخ الإتاحة2022-04-14T08:45:44Z
تاريخ النشر2014
اسم المنشورProceedings of the IEEE Conference on Decision and Control
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/CDC.2014.7039779
معرّف المصادر الموحدhttp://hdl.handle.net/10576/29817
الملخصIn this paper, a Bayesian framework for identification of linear parameter-varying (LPV) models with finite impulse response (FIR) dynamic structure is introduced, in which the dependency structure of LPV system on the scheduling variables is identified based on a Gaussian Process (GP) formulation. Using this approach, a GP is employed to describe the distribution of the coefficient functions, that are dependent on the scheduling variables, in LPV linear-regression models. First, a prior distribution over the nonlinear functions representing the unknown coefficient dependencies of the model to be estimated is defined; then, a posterior distribution of these functions is obtained given measured data. The mean value of the posterior distribution is used to provide a model estimate. The approach is formulated with both static and dynamic dependency of the coefficient functions on the scheduling variables. The properties and performance of the proposed method are evaluated using illustrative examples. 2014 IEEE.
راعي المشروعQatar National Research Fund
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعBayesian method
Gaussian process
Linear parameter-varying systems
linear regression model
system identification
العنوانA Bayesian approach for estimation of linear-regression LPV models
النوعConference Paper
الصفحات2555-2560
رقم العددFebruary
رقم المجلد2015-February
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة