• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Earth Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Earth Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Coupling phosphate-solubilizing bacteria (PSB) with inorganic phosphorus fertilizer improves mungbean (Vigna radiata) phosphorus acquisition, nitrogen fixation, and yield in alkaline-calcareous soil

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Coupling phosphate-solubilizing bacteria.pdf (1.119Mb)
    Date
    2022-03-31
    Author
    Hamid, Khan
    Akbar, Waqas Ali
    Shah, Zahir
    Rahim, Hafeez Ur
    Taj, Ali
    Alatalo, Juha.M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    To overcome the problems associated with soil phosphorus (P) insolubility, soil inoculation with phosphate-solubilizing bacteria (PSB) can be used. In a field experiment, we evaluated the efficacy of PSB in enhancing mungbean P acquisition, nitrogen (N) fixation, and morphological and yield traits in alkaline-calcareous soil when added together with P as single superphosphate (SSP) or rock phosphate (RP) at 45 or 90 kg P2O5 ha−1. Coupling PSB with mineral P fertilizers (SSP & RP) improved P use efficiency, mungbean P acquisition, N2 fixation, nodulation, NP uptake, and the morphological and yield-related traits of mungbeans compared with non-fertilized controls and plots received P from mineral sources alone. Soil PSB inoculation with mineral P also improved post-harvest soil fertility relative to pre-harvest by improving soil organic matter from 0.61% to 0.70%, lowering pH from 7.74 to 7.68, and improving soil total N from 0.04 to 0.09%, ABDTPA-extractable P from 2.07 to 3.44 mg kg−1, and potassium (K) concentrations from 100.27 to 129.45 mg kg−1. When combined with PSB, RP generally performed better than SSP. Moreover, there was a significant correlation between soil N and plant N, while the correlation between soil P and plant P was non-significant. The correlation between soil organic matter content and NP uptake by mungbeans was also non-significant. Therefore, adding P as RP at 45–90 kg ha−1, together with PSB inoculation, can be recommended for improving mungbean P acquisition, use efficiency, optimum N2 fixation, and yield in alkaline-calcareous soils.
    URI
    https://www.sciencedirect.com/science/article/pii/S2405844022003693
    DOI/handle
    http://dx.doi.org/10.1016/j.heliyon.2022.e09081
    http://hdl.handle.net/10576/30040
    Collections
    • Earth Science Cluster [‎216‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video