عرض بسيط للتسجيلة

المؤلفAbdellatif A.A.
المؤلفMhaisen N.
المؤلفMohamed A.
المؤلفErbad A.
المؤلفGuizani M.
المؤلفDawy Z.
المؤلفNasreddine W.
تاريخ الإتاحة2022-04-21T08:58:19Z
تاريخ النشر2022
اسم المنشورFuture Generation Computer Systems
المصدرScopus
المعرّفhttp://dx.doi.org/10.1016/j.future.2021.10.016
معرّف المصادر الموحدhttp://hdl.handle.net/10576/30044
الملخصFederated Learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model, without the need to share their local data. It is a promising solution for telemonitoring systems that demand intensive data collection, for detection, classification, and prediction of future events, from different locations while maintaining a strict privacy constraint. Due to privacy concerns and critical communication bottlenecks, it can become impractical to send the FL updated models to a centralized server. Thus, this paper studies the potential of hierarchical FL in Internet of Things (IoT) heterogeneous systems. In particular, we propose an optimized solution for user assignment and resource allocation over hierarchical FL architecture for IoT heterogeneous systems. This work focuses on a generic class of machine learning models that are trained using gradient-descent-based schemes while considering the practical constraints of non-uniformly distributed data across different users. We evaluate the proposed system using two real-world datasets, and we show that it outperforms state-of-the-art FL solutions. Specifically, our numerical results highlight the effectiveness of our approach and its ability to provide 4-6% increase in the classification accuracy, with respect to hierarchical FL schemes that consider distance-based user assignment. Furthermore, the proposed approach could significantly accelerate FL training and reduce communication overhead by providing 75-85% reduction in the communication rounds between edge nodes and the centralized server, for the same model accuracy.
راعي المشروعQatar Foundation;Qatar National Research Fund;Politecnico di Torino
اللغةen
الناشرElsevier B.V.
الموضوعDeep learning
Gradient methods
Hierarchical systems
Internet of things
Centralized server
Distributed deep learning
Edge computing
Health systems
Heterogeneous systems
IID data
Imbalanced data
Intelligent health system
Internet of thing
Non-IID data
Edge computing
العنوانCommunication-efficient hierarchical federated learning for IoT heterogeneous systems with imbalanced data
النوعArticle
الصفحات406-419
رقم المجلد128


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة