• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hierarchical Federated Learning for Collaborative IDS in IoT Applications

    Thumbnail
    التاريخ
    2021
    المؤلف
    Saadat H.
    Aboumadi A.
    Mohamed A.
    Erbad A.
    Guizani M.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    As the Internet-of-Things devices are being very widely adopted in all fields, such as smart houses, healthcare, and transportation, extremely huge amounts of data are being gathered, shared, and processed. This fact raises many challenges on how to make the best use of this amount of data to improve the IoT systems' security using artificial intelligence, with taking into consideration the resource limitations in IoT devices and issues regarding data privacy. Different techniques have been studied and developed throughout the years. For example, Federated Learning (FL), which is an emerging learning technique that is very well known for preserving and respecting the privacy of the collaborating clients' data during model training. Therefore, in this paper, the concepts of FL and Hierarchical Federated Learning (HFL) are evaluated and compared with respect of detection accuracy and speed of convergence, through simulating an Intrusion Detection System for Internet-of-Things applications. The imbalanced NSL-KDD dataset was used in this work. Despite its infrastructure overhead, HFL proved its superiority over FL in terms of training loss, testing accuracy, and speed of convergence in three study cases. HFL also showed its efficiency over FL in reducing the effect of the non-identically and independently (non-iid) distributed data on the collaborative learning process. 2021 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/MECO52532.2021.9460304
    http://hdl.handle.net/10576/30058
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video