• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Iterative per Group Feature Selection for Intrusion Detection

    Thumbnail
    Date
    2020
    Author
    Chkirbene Z.
    Erbad A.
    Hamila R.
    Gouissem A.
    Mohamed A.
    Guizani M.
    Hamdi M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Network security is an critical subject in any distributed network. Recently, machine learning has proven their efficiency for intrusion detection. By using a comprehensive dataset with multiple attack types, a well-trained model can be created to improve the anomaly detection performance. However, high dimensional data sets are a significant challenge for machine learning. In fact, learning algorithms considering all features in the input data, may cause over-fitting to irrelevant aspects of the data and increase the computational time caused by the process of similar features that provide redundant information, which is a critical problem especially for users with constrained resources. In this paper, we propose a new and efficient feature selection technique for intrusion detection in modern networks called Iterative Per Group Feature Selection (IPGFS). IPGFS reduces the number of features in the input data and selects the best features using the performance accuracy of the classifier. The features are sorted and selected according to their accuracy score. Both the UNSW and NSLKDD datasets are used in this paper to validate the proposed model and verify its efficiency in detecting intrusions. The simulation results show that the proposed model can reduce the number of features for the two dataset while successfully detecting intrusions with better accuracy compared to state-of-the-art techniques. Index Cloud security, feature selection, accuracy, machine learning techniques. 2020 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/IWCMC48107.2020.9148067
    http://hdl.handle.net/10576/30093
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video