• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal resource allocation for green and clustered video sensor networks

    Thumbnail
    Date
    2018
    Author
    Arar A.
    Mohamed A.
    El-Sherif A.A.
    Leung V.C.M.
    Metadata
    Show full item record
    Abstract
    Wireless video sensor networks (WVSNs) are opening the door for many applications, such as industrial surveillance, environmental tracking, border security, and infrastructure health monitoring. In WVSN, energy conservation is very essential because: 1) sensors are usually battery-operated and 2) each sensor node needs to compress the video prior to transmission, which consumes more power than conventional wireless sensor networks. In this paper, we study the problem of minimizing the total power consumption in a cluster-based WVSN, leveraging cross-layer design to optimize the encoding power, the transmission power, and the source rate at each sensor node. To realize this problem, we devise a resource optimization framework, which takes into account the video signal distortion due to compression, in addition to packet loss in the wireless channel while trying to allocate network resources among multiple video sensors. Leveraging duality theory, we design a proximal minimization algorithm that is capable of achieving the optimal allocation of network resources, source rates, and encoding and communication powers, while providing application-level quality of service represented by video distortion. The algorithm is extended for sensor nodes with hybrid energy sources, leveraging energy harvesting to minimize the aggregate power, while addressing the tradeoff between renewable versus grid energy sources. 2007-2012 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/JSYST.2016.2618386
    http://hdl.handle.net/10576/30111
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video