• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multimodal deep learning approach for Joint EEG-EMG Data compression and classification

    No Thumbnail [120x130]
    التاريخ
    2017
    المؤلف
    Ben Said A.
    Mohamed A.
    Elfouly T.
    Harras K.
    Wang Z.J.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In this paper, we present a joint compression and classification approach of EEG and EMG signals using a deep learning approach. Specifically, we build our system based on the deep autoencoder architecture which is designed not only to extract discriminant features in the multimodal data representation but also to reconstruct the data from the latent representation using encoder-decoder layers. Since autoencoder can be seen as a compression approach, we extend it to handle multimodal data at the encoder layer, reconstructed and retrieved at the decoder layer. We show through experimental results, that exploiting both multimodal data intercorellation and intracorellation 1) Significantly reduces signal distortion particularly for high compression levels 2) Achieves better accuracy in classifying EEG and EMG signals recorded and labeled according to the sentiments of the volunteer. 2017 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/WCNC.2017.7925709
    http://hdl.handle.net/10576/30113
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement

    وثائق ذات صلة

    عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.

    • No Thumbnail [110x130]

      Adaptive compression and optimization for real-time energy-efficient wireless EEG monitoring systems 

      Hussein R.; Mohamed A.; Alghoniemy M. ( IEEE , 2013 , Conference)
      Recent technological advances in wireless body sensor networks (WBSN) have made it possible for the development of innovative medical applications to improve health care and the quality of life. Electroencephalography ...
    • Thumbnail

      An Adaptive Joint Sparsity Recovery for Compressive Sensing Based EEG System 

      Djelouat, Hamza; Baali, Hamza; Amira, Abbes; Bensaali, Faycal ( Hindawi Limited , 2017 , Article)
      The last decade has witnessed tremendous efforts to shape the Internet of things (IoT) platforms to be well suited for healthcare applications. These platforms are comprised of a network of wireless sensors to monitor ...
    • No Thumbnail [110x130]

      Real-time DWT-based compression for wearable Electrocardiogram monitoring system 

      Al-Busaidi A.M.; Khriji L.; Touati F.; Rasid M.F.A.; Ben Mnaouer A. ( Institute of Electrical and Electronics Engineers Inc. , 2015 , Conference)
      Compression of Electrocardiogram signal is important for digital Holters recording, signal archiving, transmission over communication channels and Telemedicine. This paper introduces an effective real-time compression ...

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video

    NoThumbnail