• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adaptive compression and optimization for real-time energy-efficient wireless EEG monitoring systems

    Thumbnail
    التاريخ
    2013
    المؤلف
    Hussein R.
    Mohamed A.
    Alghoniemy M.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Recent technological advances in wireless body sensor networks (WBSN) have made it possible for the development of innovative medical applications to improve health care and the quality of life. Electroencephalography (EEG)-based applications lie at the heart of this promising technologies. However, excessive power consumption may render some of these applications inapplicable. Hence, intelligent energy efficient methods are needed to improve such applications. In this work, such improved efficiency can be obtained by utilizing smart compression techniques, which reduce airtime over energy-hungry wireless channels; In particular, discrete wavelet transform (DWT) and compressive sensing (CS) are used for EEG signals acquisition and compression. To achieve low-complexity energy-efficient system, the proposed technique makes use of the receiver feedback signals in order to switch between both algorithms based on the application needs. Experimental study has shown that the proposed algorithm effectively reconfigures the utilized compression algorithm parameters based on a channel feed back signal. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/BMEiCon.2013.6687691
    http://hdl.handle.net/10576/30160
    المجموعات
    • علوم وهندسة الحاسب [‎2482‎ items ]

    entitlement

    وثائق ذات صلة

    عرض الوثائق المتصلة بواسطة: العنوان، المؤلف، المنشئ والموضوع.

    • Thumbnail

      Multimodal deep learning approach for Joint EEG-EMG Data compression and classification 

      Ben Said A.; Mohamed A.; Elfouly T.; Harras K.; Wang Z.J. ( Institute of Electrical and Electronics Engineers Inc. , 2017 , Conference)
      In this paper, we present a joint compression and classification approach of EEG and EMG signals using a deep learning approach. Specifically, we build our system based on the deep autoencoder architecture which is designed ...
    • Thumbnail

      An Adaptive Joint Sparsity Recovery for Compressive Sensing Based EEG System 

      Djelouat, Hamza; Baali, Hamza; Amira, Abbes; Bensaali, Faycal ( Hindawi Limited , 2017 , Article)
      The last decade has witnessed tremendous efforts to shape the Internet of things (IoT) platforms to be well suited for healthcare applications. These platforms are comprised of a network of wireless sensors to monitor ...
    • Thumbnail

      Real-time DWT-based compression for wearable Electrocardiogram monitoring system 

      Al-Busaidi A.M.; Khriji L.; Touati F.; Rasid M.F.A.; Ben Mnaouer A. ( Institute of Electrical and Electronics Engineers Inc. , 2015 , Conference)
      Compression of Electrocardiogram signal is important for digital Holters recording, signal archiving, transmission over communication channels and Telemedicine. This paper introduces an effective real-time compression ...

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video