• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effective seizure detection through the fusion of single-feature enhanced-k-NN classifiers of EEG signals

    Thumbnail
    التاريخ
    2013
    المؤلف
    Mohamed A.
    Shaban K.B.
    Mohamed A.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Electroencephalogram (EEG) physiological signals are widely used for detecting epileptic seizure. To reduce complexity stemming from the dimensionality problem, EEG signals are often reduced into a smaller set of discriminant features. The effectiveness of the detection techniques relies on the discriminant power of these features. However, since these features summarize the actual EEG signals, some valuable information can be lost. If unaddressed, this inherited incompleteness property can have a negative impact on the performance of the detection techniques, depending on the importance of the lost information. In this work, the evidence theory is utilized at two levels; (1) to enhance k-nearest-neighbor (k-NN) classifier, and (2) to combine decision collected from these enhanced-k-NNs. To effectively handle the incompleteness problem, the enhanced-k-NN has each feature pool k neighbors and consider each of these neighbors as a piece of evidence regarding its discriminant quality. Within the framework of evidence theory, these neighbors are combined together using the Dempster's rule to form a feature evidence structure. The feature evidence structures are then fused together to produce an overall pattern evidence structure which is used for the classification decision. To demonstrate the effectiveness of the proposed approach, five simple time domain features are obtained from EEG signals, and higher classification accuracy of 90% is achieved compared to other approaches which use more complex features. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/BRC.2013.6487534
    http://hdl.handle.net/10576/30163
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video