• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and analysis of an adaptive compressive sensing architecture for epileptic seizure detection

    Thumbnail
    Date
    2013
    Author
    Hussein R.
    Mohamed A.
    Alghoniemy M.
    Awad A.
    Metadata
    Show full item record
    Abstract
    Epileptic detection techniques rely heavily on the Electroencephalography (EEG) as a representative signal carrying valuable information pertaining to the current brain state. In this work, we investigate the stability of time domain EEG features while varying the channel conditions. We identify the feature sets that would provide the most robust EEG classification accuracy. Moreover, an embedded Compressive Sensing (CS)-based EEG encoding system whose complexity is adapted to the channel condition is proposed. We also propose a framework called Classification Accuracy-Compression Ratio-Signal to Noise Ratio (CA-CR-SNR) that adapts compression ratio according to the channel condition. Simulation results show that selecting appropriate EEG feature combinations can relatively overcome the impact of bad channel conditions; however, this simple solution is still inadequate. The proposed adaptive algorithm reconfigures the compression ratio based on a channel feedback signal to further improve the classification accuracy. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ICEAC.2013.6737653
    http://hdl.handle.net/10576/30166
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video