• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance analysis of hybrid solar chimney?power plant for power production and seawater desalination: A sustainable approach

    Thumbnail
    Date
    2021
    Author
    Abdelsalam E.
    Kafiah F.
    Tawalbeh M.
    Almomani F.
    Azzam A.
    Alzoubi I.
    Alkasrawi M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This study presents a novel design that combines cooling tower (CT) and traditional solar chimney power plant (SCPP) technologies for electricity generation and seawater desalination. The proposed hybrid solar chimney power plant (HSCPP) shares the operation of the chimney part and the bi-directional turbine between the SCPP and CT, allowing alternative operation of the CT during the nighttime and the SCPP during the daytime, and achieving continuous system utilization. The performance of the HSCPP design was validated against baseline models using 1 year of weather data from the city of Aqaba in Jordan. Results revealed that the HSCPP has the potential to produce ~50% electricity (528 MWh/year) higher than the traditional SCPP (365 MWh/year). The annual seawater desalination capacity of the HSCPP was estimated at 138300 m3, which is 1.5 folds higher than the traditional SCPP. The HSCPP reduced the annual CO2 emissions by 40% (~500 tons) compared to traditional SCPP with annual revenue of US$190 000. Furthermore, the results show that the HSCPP is 1.4 times more efficient than the traditional SCPP. The HSCPP achieved a system utilization factor of 0.73% compared to 0.52% for the traditional SCPP. The HSCPP showed promising sustainable and economical technology for the production of electricity and water while reducing the emission of GHG.
    DOI/handle
    http://dx.doi.org/10.1002/er.6004
    http://hdl.handle.net/10576/30268
    Collections
    • Chemical Engineering [‎1194‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video