Bio-sorption of toxic metals from industrial wastewater by algae strains Spirulina platensis and Chlorella vulgaris: Application of isotherm, kinetic models and process optimization
View/ Open
Publisher version (Check access options)
Check access options
Date
2021Metadata
Show full item recordAbstract
The present study evaluates the effect of an acidic treatment on the improvement of the percentage removal of toxic metal (%TMrem) from wastewater by algae strains (Spirulina platensis (SP) and Chlorella vulgar (CV)) under different adsorbent dosages (0.2–2.5 g), a pH of (4–8) and contact time (5–100 min). The acidic treatment (Ac-T) altered the functional groups on the surface of algae promoting more electronegative groups and improved the %TMrem of Al, Ni and Cu. Treated SP removed up to 95.0 ± 0.3% (Std. Dev = 0.24), 87.0 ± 0.2% (Std. Dev = 0.34)%, and 63.0 ± 0.3% (Std. Dev = 0.14) of Al, Ni, and Cu at the optimum pH of 5.5, 6.0, and, 7.0 and an adsorbent dosage of = 2.5 ± 0.1 g/L (Std. Dev = 0.14) g/L, respectively. Lower %TMrem of 87.0% ± 0.2 (Std. Dev = 0.09), 79.1 ± 0.4% (Std. Dev = 0.08), and 80.0 ± 0.2% (Std. Dev = 0.04) were achieved with treated CV, respectively. The optimum operational conditions for maximum %TMrem were determined at (Calgae = 4.8 ± 0.2 gMNPs.L−1, Ct = 88 ± 1, and pH = 6) using the response surface methodology (RSM). The adsorption of TMs on algae is endothermic, spontaneous, and follows Langmuir and second-order kinetics. Zeta potential measurements indicated that the adsorption mechanism between the toxic metal (TM) and algal strains is controlled by electrostatic interaction. As such, bio-sorption is a sustainable and efficient technology for the removal of TM from wastewater.
Collections
- Chemical Engineering [1172 items ]