• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكيميائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكيميائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction the performance of multistage moving bed biological process using artificial neural network (ANN)

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2020
    المؤلف
    Almomani F.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Complexity, uncertainty, and high dynamic nature of nutrient removal through biological processes (BPs) makes it difficult to model and control these processes, forcing designers to rely on approximations, probabilities, and assumptions. To cope with this difficult task and perform an effective and well-controlled BP operation, an artificial neural network (ANN) algorithm was developed to simulate, model, and control a three-stage (anaerobic/anoxic and MBBR) enhanced nutrient removal biological process (ENR-BP) challenging real wastewater. The effect of surface area loading rate (SALR), organic matters (OMs), nutrients (N & P), feed flow rate (Qfeed), hydraulic retention time (HRT), and internal recycle flow (IRF) on the performance of the ENR-BP to fulfil rigorous discharge limitations were evaluated. Experimental data was used to develop the appropriate architecture for the AAN using iterative steps of training and testing. Significant removals of chemical oxygen demand (COD) (89.2 to 98.3%), NH4+ (88.5 to 98.9%), and total phosphorus (TP) (77.9 to 99.9%) were achieved at a total HRT of 13.3 h (HRTZ-1 = 3 h, HRTZ-2 = 6 h and HRTZ-3 = 5.3 h) and an IRF value of 1.75. The ENR-BP treatment mechanism relies on the use of OMs as a source of energy for phosphorus bio-uptake and the simultaneous nitrification and denitrification (SND) of nitrogen compounds. The removal efficiencies in the proposed ENR-BP were four fold higher than the suspended growth process and in the same order of magnitude of 5-stage Bardenpho-MBBR. The developed ANN-based model provides an efficient and robust tool for predicting and forecasting the performance of the ENR-BP.
    DOI/handle
    http://dx.doi.org/10.1016/j.scitotenv.2020.140854
    http://hdl.handle.net/10576/30310
    المجموعات
    • الهندسة الكيميائية [‎1196‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video